SCTE · ISBE s T A N D A R D S

Network Operations Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 38-4 2017

Hybrid Fiber/Coax Outside Plant Status Monitoring SCTE-HMS-PS-MIB

Management Information Base (MIB) Definition

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) / International Society of Broadband Experts (ISBE) Standards and Operational Practices (hereafter called "documents") are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interchangeability, best practices and ultimately the long-term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE•ISBE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE•ISBE members.

SCTE•ISBE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents, and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

Attention is called to the possibility that implementation of this document may require the use of subject matter covered by patent rights. By publication of this document, no position is taken with respect to the existence or validity of any patent rights in connection therewith. SCTE•ISBE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE•ISBE web site at http://www.scte.org.

All Rights Reserved

© Society of Cable Telecommunications Engineers, Inc. 2017 140 Philips Road Exton, PA 19341

Contents

1.	SCOPE	4
2.	COPYRIGHT	4
3.	NORMATIVE REFERENCES	4
4.	INFORMATIVE REFERENCES	4
5.	TERMS AND DEFINITIONS	4
6.	REQUIREMENTS	4

1. Scope

This document is identical to SCTE 38-4 2012 except for informative components which may have been updated such as the title page, NOTICE text, headers and footers. No normative changes have been made to this document.

This document defines information commonly available from HFC power supplies. Its structure permits multiple power supplies to be monitored by a single transponder.

2. Copyright

The MIB definition found in this document may be incorporated directly in products without further permission from the copyright owner, SCTE.

3. Normative References

The following documents contain provisions, which, through reference in this text, constitute provisions of this standard. At the time of subcommittee approval, the editions indicated were valid. All standards are subject to revision, and parties to agreement based on this standard are encouraged to investigate the possibility of applying the most recent editions of the documents listed below.

- 3.1 IETF RFC 1155, Structure and identification of management information for TCP/IP-based internets
- 3.2 ANSI/SCTE 37 2010 Hybrid Fiber/Coax Outside Plant Status Monitoring SCTE-HMS-ROOTS Management Information Base (MIB) Definition

4. Informative References

The following document may provide valuable information to the reader but are not required when complying with this standard.

4.1 ANSI/SCTE 25-3 2011, Hybrid Fiber Coax Outside Plant Status Monitoring – Power Supply to Transponder Interface Bus (PSTIB) Specification v1.1

5. Terms and Definitions

This document defines the following terms:

Management Information Base (MIB) - the specification of information in a manner that allows standard access through a network management protocol.

6. Requirements

This section defines the mandatory syntax of the SCTE-HMS-PS-MIB. It follows the IETF Simple Network Management Protocol (SNMP) for defining the managed objects. The syntax is given below.

```
__ *******************************
-- * Module Name: HMS027R13.MIB
-- * SCTE Status: ADOPTED FEBRUARY 15, 2002
-- * Description: This MIB contains information commonly available from HFC power supplies.
           Its structure permits multiple power supplies to be monitored by a single transponder.
           See SCTE 25-3 (formerly HMS 022) for additional information.
           This MIB is not restricted to only power supplies with serial interfaces.
-- * Revisions from previous release:
-- * Edited OID descriptions only. For many of the OIDs ending with the word "support", enhanced the description to indicate
-- * exactly what other OID is supported. Clarified the description for psEquipmentControl and psOutputCurrent.
                                                                                                               -- * Expanded the definition of psProtocolVersion to allow for the case where
there is no Transponder Interface Bus as defined by 25-3.
-- * Note:
-- * Objects which are not present must not have the properties present either. This applies to:
-- * a) Any object(s) not supported by a supply (e.g., if psOutputPowerSupport.1 indicates 'none', then
    a GetRequest for psPowerOut.1 should return the SNMP error NoSuchName, and properties for
    the psPowerOut object should not be accessible.
-- * b) All objects for a supply that is not present (e.g., if power supply 2 does not exist, then objects
    indexed by power supply address 2 should not exist, nor should the properties.)
SCTE-HMS-PS-MIB DEFINITIONS ::= BEGIN
IMPORTS
  OBJECT-TYPE FROM RFC-1212
  DisplayString FROM RFC1213-MIB
  psIdent FROM SCTE-HMS-ROOTS
__ /*************
-- * The Power Supply Group
__ *********************************
psMonitored OBJECT-TYPE
  SYNTAX INTEGER (0..8)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
```

```
"Number of power supply connected to this NE."
   ::= { psIdent 1 }
-- * NOTE: The following description is standard SNMP, and is meant as clarification.
-- * If psMonitored is 0, the NOSUCHNAME error must be returned for any Get/Set against objects in the
-- * tables listed below. Likewise, the NOSUCHNAME error must be returned for any Get/Set using a psDeviceAddress
-- * index for a non-existant power supply. This is also the case if the device at the address specified
-- * is not a power supply.
-- * For example, if 2 power supplies are available, with addresses 3 and 4, then a Get/Set using
-- * address 2 MUST return NOSUCHNAME. Returning an actual value with no error under these conditions is
-- * misleading and incorrect.
-- * psDeviceTable
-- * psStringTable
-- * psBatteryTable
-- * psOutputTable
-- * These rules apply to other tables as well.
psDeviceTable OBJECT-TYPE
  SYNTAX SEQUENCE OF PsDeviceEntry
   ACCESS not-accessible
   STATUS mandatory
   DESCRIPTION
      "Table containing information about the individual
      power supplies being monitored"
   ::= { psIdent 2 }
psDeviceEntry OBJECT-TYPE
   SYNTAX PsDeviceEntry
   ACCESS not-accessible
   STATUS mandatory
   DESCRIPTION
      "List of information about each power supply being monitored."
   INDEX { psDeviceAddress }
   ::= { psDeviceTable 1 }
PsDeviceEntry ::=
   SEQUENCE
     psDeviceAddress
        INTEGER,
-- * Power Supply Configuration
     psProtocolVersion
        INTEGER,
```

psSoftwareVersion DisplayString,

psDeviceId OCTET STRING,

psBatteries INTEGER,

psBatteryStrings INTEGER,

psTempSensors INTEGER,

psOutputs INTEGER,

psBatteryCurrentSupport INTEGER,

psFloatCurrentSupport INTEGER,

psOutputVoltageSupport INTEGER,

psInputVoltageSupport INTEGER,

psPowerSupplyTest INTEGER,

psMajorAlarmSupport INTEGER,

psMinorAlarmSupport INTEGER,

psTamperSupport INTEGER,

 $ps Battery Voltage Support\\INTEGER,$

psOutputPowerSupport INTEGER,

 $psOutput Frequency Support\\ INTEGER,$

psInputCurrentSupport INTEGER,

psInputPowerSupport INTEGER,

-- * Power Supply Data

psOutputVoltage INTEGER,

psInputVoltage INTEGER,

psInverterStatus INTEGER,

psMajorAlarm INTEGER,

psMinorAlarm INTEGER,

psTamper INTEGER,

psTotalStringVoltage INTEGER,

psEquipmentControl INTEGER,

psPowerOut INTEGER,

psFrequencyOut INTEGER,

psRMSCurrentIn INTEGER,

psPowerIn INTEGER,

psInputVoltagePresence INTEGER,

```
psFrequencyIn
        INTEGER
psDeviceAddress OBJECT-TYPE
  SYNTAX INTEGER (1..8)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
      "Index into the psDeviceTable. For devices that implement ANSI/SCTE 25-3 (formally HMS022),
     this is the address of this device on the RS-485 path."
  ::= { psDeviceEntry 1 }
-- * Power Supply Configuration
psProtocolVersion OBJECT-TYPE
  SYNTAX INTEGER (1..254)
   ACCESS read-only
  STATUS mandatory
  DESCRIPTION
      "Version of the SCTE HMS protocol implemented in the monitored
     equipment. The 'Protocol Version' implementation will comply
     with the defined protocol in the SCTE 25-3 (formerly HMS 022) document with the
     corresponding revision number.
      Example: A power supply implementing all commands and responses defined in
     SCTE 25-3 version 1.0 (formerly HMS 022) would return a value of 10 (decimal) in this field,
     reflecting major revision 1, minor revision 0.
     Any number returned that is less than 10 reflects a version of the SCTE 25-3 specification
     that had not yet been approved by SCTE.
     Transponders which are capable of appropriately rendering the data as defined by this MIB
      without implementing an interface as defined by SCTE 25-3 may respond with one of two values:
     [a] the transponder may return a value of zero (0), or [b] the transponder may return a value
     consistent with the SCTE 25-3 version that the transponder wants to make it appear it is
     supporting."
  ::= { psDeviceEntry 2 }
psSoftwareVersion OBJECT-TYPE
  SYNTAX DisplayString (SIZE(8))
   ACCESS read-only
  STATUS mandatory
  DESCRIPTION
      "The content of this field is vendor specific. The intent is to provide
      a text representation of the power supply or generator system software
```

```
version. Any printable ASCII characters can be included in this field.
     NULL (0x00) characters are non-printable and are used to fill any unused
     locations following the text data"
  ::= { psDeviceEntry 3 }
psDeviceId OBJECT-TYPE
  SYNTAX OCTET STRING (SIZE(32))
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "The content of this field is vendor specific. The intent is to provide
     manufacturer and/or product specific ASCII text information that will
     propagate to the manager's console verbatim. The following special
     characters are defined in association with this field:\\' Used to cause
     a new line on the console display. Example: 'ALPHA\XM2 9015'
     would appear at the monitoring station as:
       ALPHA
        XM2 9015"
  ::= { psDeviceEntry 4 }
psBatteries OBJECT-TYPE
  SYNTAX INTEGER (0..8)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Current number of batteries per battery string."
  ::= { psDeviceEntry 5 }
psBatteryStrings OBJECT-TYPE
  SYNTAX INTEGER (0..2)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Current number of battery strings."
  ::= { psDeviceEntry 6 }
psTempSensors OBJECT-TYPE
  SYNTAX INTEGER (0..2)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Number of Battery temperature sensors."
  ::= { psDeviceEntry 7}
psOutputs OBJECT-TYPE
  SYNTAX INTEGER (1..5)
  ACCESS read-only
  STATUS mandatory
```

```
DESCRIPTION
     "Number of power supply outputs."
  ::= { psDeviceEntry 8 }
psBatteryCurrentSupport OBJECT-TYPE
  SYNTAX INTEGER
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Bit Map that defines if battery current is measured in this installation.
     Bit set means this particular string supports this measurement.
     Bits Addresses
     0 Not used
     1 1 String 1 has battery current support
     2 2 String 2 has battery current support
         3 String 3 has battery current support
         4 String 4 has battery current support
         . .....
        . ......
         n String n has battery current support
  ::= { psDeviceEntry 9 }
psFloatCurrentSupport OBJECT-TYPE
  SYNTAX INTEGER
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Bit Map that defines if float current is measured in this installation.
     Bit set means this particular string supports this measurement.
     Bits Addresses
     0 Not used
         1 String 1 has float current support
     2 2 String 2 has float current support
     3 String 3 has float current support
         4 String 4 has float current support
        . .....
     . . ......
     . . ......
     n n String n has float current support
  ::= { psDeviceEntry 10 }
psOutputVoltageSupport OBJECT-TYPE
  SYNTAX INTEGER { none(1), supported(2) }
  ACCESS read-only
```

```
STATUS mandatory
  DESCRIPTION
     "Defines if power supply supports monitoring of output voltage and psOutputVoltage:
     1 = No support. For devices that implement ANSI/SCTE 25-3 (formally HMS022) discard
        associated value in Get_Power_Supply_Data response.
      2 = Field is supported in this installation."
  ::= { psDeviceEntry 11 }
psInputVoltageSupport OBJECT-TYPE
  SYNTAX INTEGER { none(1), binary(2), analog(3) }
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Defines if power supply supports monitoring of input or line voltage and psInputVoltage:
     1 = No support. For devices that implement ANSI/SCTE 25-3 (formally HMS022) discard
        associated value in Get_Power_Supply_Data response.
     2 = Field is supported - value in psInputVoltagePresence.
     3 = Field is supported - analog representation. value in psInputVoltage."
  ::= { psDeviceEntry 12 }
psPowerSupplyTest OBJECT-TYPE
  SYNTAX INTEGER { none(1), supported(2) }
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Defines if power supply supports the remote test feature:
     1 = Function not supported.
     2 - Function is supported."
  ::= { psDeviceEntry 13 }
psMajorAlarmSupport OBJECT-TYPE
  SYNTAX INTEGER { none(1), supported(2) }
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Defines if the power supply supports the major alarm indicator and psMajorAlarm:
      1 = No support. For devices that implement ANSI/SCTE 25-3 (formally HMS022) discard
        associated value in Get_Power_Supply_Data response.
     2 = Field is supported in this installation."
  ::= { psDeviceEntry 14 }
psMinorAlarmSupport OBJECT-TYPE
  SYNTAX INTEGER { none(1), supported(2) }
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
```

```
"Defines if the power supply supports the minor alarm indicator and psMinorAlarm:
      1 = No support. For devices that implement ANSI/SCTE 25-3 (formally HMS022) discard
        associated value in Get_Power_Supply_Data response.
      2 = Field is supported in this installation."
   ::= { psDeviceEntry 15 }
psTamperSupport OBJECT-TYPE
  SYNTAX INTEGER { none(1), supported(2) }
   ACCESS read-only
  STATUS mandatory
  DESCRIPTION
      "Defines if the enclosure door switch is installed in this location and psTamper is supported:
      1 = No support. For devices that implement ANSI/SCTE 25-3 (formally HMS022) discard
        associated value in Get_Power_Supply_Data response.
      2 = Field is supported in this installation."
   ::= { psDeviceEntry 16 }
psBatteryVoltageSupport OBJECT-TYPE
  SYNTAX INTEGER { noMonitoring(1), totalString(2), both(3) }
   ACCESS read-only
  STATUS mandatory
  DESCRIPTION
      "Defines the if batteries or string voltage are available:
        1 = No battery voltage monitoring is available.
        2 = Only full string battery voltage is available.
        3 = Both individual battery and full string voltages are available."
   ::= { psDeviceEntry 17 }
psOutputPowerSupport OBJECT-TYPE
  SYNTAX INTEGER { none(1), supported(2) }
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
      "Defines if the output power measurement and psPowerOut is supported:
      1 = No support. For devices that implement ANSI/SCTE 25-3 (formally HMS022) discard
         associated value in Get_Power_Supply_Data response.
      2 = Field is supported in this installation."
   ::= { psDeviceEntry 18 }
psOutputFrequencySupport OBJECT-TYPE
  SYNTAX INTEGER { none(1), supported(2) }
   ACCESS read-only
  STATUS mandatory
  DESCRIPTION
      "Defines if the output frequency measurement and psFrequencyOut is supported
      1 = No support. For devices that implement ANSI/SCTE 25-3 (formally HMS022) discard
         associated value in Get_Power_Supply_Data response.
```

```
2 = Field is supported in this installation."
  ::= { psDeviceEntry 19 }
psInputCurrentSupport OBJECT-TYPE
  SYNTAX INTEGER { none(1), supported(2) }
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Defines if the input current measurement and psRMSCurrentIn is supported
     1 = No support. For devices that implement ANSI/SCTE 25-3 (formally HMS022) discard
        associated value in Get_Power_Supply_Data response.
     2 = Field is supported in this installation."
  ::= { psDeviceEntry 20 }
psInputPowerSupport OBJECT-TYPE
  SYNTAX INTEGER { none(1), supported(2) }
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Defines if the input power measurement and psPowerIn is supported
     1 = No support. For devices that implement ANSI/SCTE 25-3 (formally HMS022) discard
        associated value in Get_Power_Supply_Data response.
     2 = Field is supported in this installation."
  ::= { psDeviceEntry 21 }
-- * Power Supply Data
psOutputVoltage OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Power supply output voltage in 1/100 Volts units.
     This RMS value is common for all outputs in a multiple output system.
      This item requires an entry in the properties MIB"
  ::= { psDeviceEntry 22 }
psInputVoltage OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
     "Scaled representation of input 'line' or 'grid' voltage. This is an
      RMS value in 1/100 Volts units. This item requires an entry in the
      properties MIB."
  ::= { psDeviceEntry 23 }
psInverterStatus OBJECT-TYPE
```

```
SYNTAX INTEGER { off(1), lineFail(2), testCycle(3), testStarted(4), testFailed(5) }
  ACCESS read-only
  STATUS optional
  DESCRIPTION
      "Status of power supply inverter. Enumerated value indicates current
      status of inverter.
      1 = OFF.
      2 = ON: AC Line Fail,
      3 = ON: Local Test Cycle,
      4 = ON: Remote test initiated
      5 = ALARM: Last Test Failed
      This item requires entries in the discrete properties MIB."
  ::= { psDeviceEntry 24 }
psMajorAlarm OBJECT-TYPE
  SYNTAX INTEGER { noAlarm(1), alarm(2) }
  ACCESS read-only
  STATUS optional
  DESCRIPTION
      "Service has been dropped or a service interruption is imminent.
      Indicates that an immediate truck roll is appropriate.
      Specific alarms and alarm nomenclature varies between vendors.
      Vendors should disclose all conditions that contribute to this
      alarm in appropriate product literature.
      1 = OK
      2 = ALARM.
      This item requires entries in the discrete properties MIB."
  ::= { psDeviceEntry 25 }
psMinorAlarm OBJECT-TYPE
  SYNTAX INTEGER { noAlarm(1), alarm(2) }
  ACCESS read-only
  STATUS optional
  DESCRIPTION
      "A non-service effecting condition has occurred and should
      be monitored. Specific alarms and alarm nomenclature varies
      between vendors. Vendors should disclose all conditions that
      contribute to this alarm in appropriate product literature.
      1 = OK
      2 = ALARM
      This item requires entries in the discrete properties MIB."
```

```
::= { psDeviceEntry 26 }
psTamper OBJECT-TYPE
  SYNTAX INTEGER { closed(1), open(2) }
  ACCESS read-only
  STATUS optional
  DESCRIPTION
      "Indicates status of enclosure door. This notification is
     NOT included in the 'Major' or 'Minor' alarm fields.
     Individual users / installations must determine if a door
     open status represents an alarm and if so, of what severity.
      1 = CLOSED,
      2 = OPEN
      This item requires entries in the discrete properties MIB."
  ::= { psDeviceEntry 27 }
psTotalStringVoltage OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
      "Scaled representation of the full battery string in 1/100 Volts units.
     This item requires an entry in the properties MIB."
  ::= { psDeviceEntry 28 }
psEquipmentControl OBJECT-TYPE
  SYNTAX INTEGER { stopTest(1), startTest(2) }
  ACCESS read-write
  STATUS optional
  DESCRIPTION
      "Inverter test control. During AC Fail (psInverterStatus = 2)
      the result of changing this value is unspecified and vendor specific.
      1 = Discontinue inverter operation,
      2 = Begin inverter operation"
  ::= { psDeviceEntry 29 }
psPowerOut OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
```

```
"Representation of power supply output power in 1 W.
     This item requires an entry in the properties MIB."
  ::= { psDeviceEntry 30 }
psFrequencyOut OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
     "Scaled representation of the power supply output frequency in 1/100 Hz.
     This item requires an entry in the properties MIB."
  ::= { psDeviceEntry 31 }
psRMSCurrentIn OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
     "Scaled representation of the power supply RMS input current in 1/100 A.
     This item requires an entry in the properties MIB."
  ::= { psDeviceEntry 32 }
psPowerIn OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
     "Representation of the power supply input power in 1 W.
     This item requires an entry in the properties MIB."
  ::= { psDeviceEntry 33 }
psInputVoltagePresence OBJECT-TYPE
  SYNTAX INTEGER { lost(1), ok(2) }
  ACCESS read-only
  STATUS optional
  DESCRIPTION
     "Digital value indicating that line voltage is present and within
     tolerance or not.
        1 = lost
        2 = ok.
     This item requires entries in the discrete properties MIB."
  ::= { psDeviceEntry 34 }
psFrequencyIn OBJECT-TYPE
```

```
SYNTAX INTEGER { fiftyHz(1), sixtyHz(2) }
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Operational frequency for input voltage"
  ::= { psDeviceEntry 35 }
-- * String data
psStringTable OBJECT-TYPE
  SYNTAX SEQUENCE OF PsStringEntry
  ACCESS not-accessible
  STATUS mandatory
  DESCRIPTION
     "Table containing strings data"
  ::= { psIdent 3 }
psStringEntry OBJECT-TYPE
  SYNTAX PsStringEntry
  ACCESS not-accessible
  STATUS mandatory
  DESCRIPTION
     "List of information about each string. Indexed by device and string number"
  INDEX { psStringDeviceAddress, psString }
  ::= { psStringTable 1 }
PsStringEntry ::=
  SEQUENCE
     psStringDeviceAddress
       INTEGER,
     psString
       INTEGER,
     psStringChargeCurrent
       INTEGER,
     psStringDischargeCurrent
       INTEGER,
     psStringFloat
        INTEGER
```

psStringDeviceAddress OBJECT-TYPE

```
SYNTAX INTEGER (1..8)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
      "Index into the psStringTable. Corresponds to psDeviceAddress in psDeviceTable."
  ::= { psStringEntry 1 }
psString OBJECT-TYPE
  SYNTAX INTEGER (1..2)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
      "Index into the psStringTable."
  ::= { psStringEntry 2 }
psStringChargeCurrent OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
      "Scaled representation of battery string charge current.
      This is an RMS value in 1/100 Amps. When batteries being discharged,
      this value will = 0.
      This item requires an entry in the properties MIB."
  ::= { psStringEntry 3 }
psStringDischargeCurrent OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
      "Scaled representation of battery string discharge current. This is
      an RMS value in 1/100 Amps.If multiple strings are installed but only
      one measurement sensor is used, this value represents the total battery
      discharge current. When batteries are being charged, this value will = 0.
      This item requires an entry in the properties MIB."
  ::= { psStringEntry 4 }
psStringFloat OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
   ACCESS read-only
  STATUS optional
  DESCRIPTION
      "Scaled representation of battery 'float' charge current in 1/100 Amps.
      This field will be '0' under conditions other than during
      actual float charging. When this field is non-zero (reporting
```

```
float current), other battery current values (charge and discharge)
      should be discarded. If multiple strings are installed but only
      one measurement sensor is used, this field represents the total float
      current.
      This item requires an entry in the properties MIB."
  ::= { psStringEntry 5 }
-- * Battery Data
psBatteryTable OBJECT-TYPE
  SYNTAX SEQUENCE OF PsBatteryEntry
  ACCESS not-accessible
  STATUS mandatory
  DESCRIPTION
     "Table containing batteries voltages"
  ::= { psIdent 4 }
psBatteryEntry OBJECT-TYPE
  SYNTAX PsBatteryEntry
  ACCESS not-accessible
  STATUS mandatory
  DESCRIPTION
     "List of information about each battery. Indexed by device number and string"
  INDEX { psBatteryDeviceAddress, psBatteryString, psBattery }
  ::= { psBatteryTable 1 }
PsBatteryEntry ::=
  SEQUENCE
     psBatteryDeviceAddress
        INTEGER,
     psBatteryString
        INTEGER,
     psBattery
        INTEGER,
     psBatteryVoltage
        INTEGER
psBatteryDeviceAddress OBJECT-TYPE
  SYNTAX INTEGER (1..8)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
```

```
"Index into the psBatteryTable. Corresponds to psDeviceAddress in psDeviceTable."
  ::= { psBatteryEntry 1 }
psBatteryString OBJECT-TYPE
  SYNTAX INTEGER (1..2)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Index into the psBatteryTable. Corresponds to psString in psStringTable."
  ::= { psBatteryEntry 2 }
psBattery OBJECT-TYPE
  SYNTAX INTEGER (1..8)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Index into the psBatteryTable."
  ::= { psBatteryEntry 3 }
psBatteryVoltage OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
     "Scaled representation of an individual battery voltage in 1/100 Volts.
     String 'A' is used if only one battery string is active.
     This item requires an entry in the properties MIB."
  ::= { psBatteryEntry 4 }
-- * Output Data
psOutputTable OBJECT-TYPE
  SYNTAX SEQUENCE OF PsOutputEntry
  ACCESS not-accessible
  STATUS mandatory
  DESCRIPTION
     "Table containing output currents"
  ::= { psIdent 5 }
psOutputEntry OBJECT-TYPE
  SYNTAX PsOutputEntry
  ACCESS not-accessible
  STATUS mandatory
  DESCRIPTION
     "List of information about each Output port. Indexed by device and port number"
  INDEX { psOutputDeviceAddress, psOutput }
  ::= { psOutputTable 1 }
```

```
PsOutputEntry ::=
  SEQUENCE
     psOutputDeviceAddress
        INTEGER,
     psOutput
        INTEGER,
     psOutputCurrent
        INTEGER
psOutputDeviceAddress OBJECT-TYPE
  SYNTAX INTEGER (1..8)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Index into the psOutputTable.Corresponds to psDeviceAddress in psDeviceTable."
  ::= { psOutputEntry 1 }
psOutput OBJECT-TYPE
  SYNTAX INTEGER (1..5)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Index into the psOutputTable. Output number"
  ::= { psOutputEntry 2 }
psOutputCurrent OBJECT-TYPE
  SYNTAX INTEGER (0..65535)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
     "Scaled representation of power supply RMS output current in 1/100 Amps.
     If psOutputTable contains only one entry for a given power supply, this
      value is the total power supply output current (the power supply may
     have one or more outputs). If psOutputTable contains multiple entries
      for a power supply, the power supply has more than one output and each
     entry represents the current on a unique and separate output.
     This item requires an entry in the properties MIB."
  ::= { psOutputEntry 3 }
psTemperatureSensorTable OBJECT-TYPE
  SYNTAX SEQUENCE OF PsTemperatureSensorEntry
  ACCESS not-accessible
  STATUS mandatory
```

```
DESCRIPTION
     "Table containing temperature sensors information"
  ::= { psIdent 6 }
psTemperatureSensorEntry OBJECT-TYPE
  SYNTAX PsTemperatureSensorEntry
  ACCESS not-accessible
  STATUS mandatory
  DESCRIPTION
     "List of information about each Temperature sensor. Indexed by device and Sensor number"
  INDEX { psTempDeviceAddress, psTemperatureSensor }
  ::= { psTemperatureSensorTable 1 }
PsTemperatureSensorEntry ::=
  SEQUENCE
     psTempDeviceAddress
       INTEGER,
     psTemperatureSensor
       INTEGER,
     psTemperature
       INTEGER
psTempDeviceAddress OBJECT-TYPE
  SYNTAX INTEGER (1..8)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Index into the psTemperatureSensorTable.Corresponds to psDeviceAddress in psDeviceTable."
  ::= { psTemperatureSensorEntry 1 }
psTemperatureSensor OBJECT-TYPE
  SYNTAX INTEGER (1..2)
  ACCESS read-only
  STATUS mandatory
  DESCRIPTION
     "Index into the psTemperatureSensorTable. Temperature sensor number"
  ::= { psTemperatureSensorEntry 2 }
psTemperature OBJECT-TYPE
  SYNTAX INTEGER (-40..80)
  ACCESS read-only
  STATUS optional
  DESCRIPTION
     "Scaled representation of temperature.
     in degrees C with a range of -40 to +80 degrees C.
```

ANSI/SCTE 38-4 2017

This item requires an entry in the properties MIB." $::= \{ psTemperatureSensorEntry 3 \}$

END